ORIGINAL ARTICLE

Reconstruction of palaeoenvironment and vegetation dynamics during the late Permian, Raniganj Coalfield, India: insights from megafossils, palynomorphs, and biomarkers

Anita Chattoraj¹ · Mrutyunjaya Sahoo²0 · S. Suresh Kumar Pillai³0 · Runcie Paul Mathews³0 · Srikanta Murthy³ · Anju Saxena³0 · Sandip Majumder¹ · Bibin Mathew⁴

Received: 2 April 2025 / Accepted: 28 September 2025

The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

The present work elucidates late Permian vegetation dynamics and palaeoenvironment by analysing the adpressed plant fossils, palynological composition, organic geochemistry, petrography, and FTIR data procured from the sediments of the Bhanora coal mine, Raniganj Coalfield, Damodar Basin, India. The study enhances our understanding of the biostratigraphic age assessment and subtleties of the depositional environment of peat-forming vegetation during the late Permian (Lopingian). A macrofossil assemblage belonging to the typical 'Glossopteris Flora' is retrieved, comprising the major elements Glossopteridales-leaf form Glossopteris (23 species), seeds-Samaropsis, Dolianitia, and fructification-Ottokaria, followed by the minor elements Equisetales-Schizoneura, Phyllotheca, and stem axes, and Coenopteridales-Botrychiopsis. The palynological analysis asserts the presence of the Densipollenites magnicorpus assemblage, suggesting a late Permian (Lopingian) age for the studied rock deposits. The palynocomposition reveals the dominance of pollen showing affinities with Glosspotridales, followed by Coniferales, Peltaspermales, Cordaitales, and trilete spores of Filicales and Lycopsidales. The morphological structures, such as the organization of the central body, saccus infrastructures, patterns of striation, and taeniae, indicate the prevalence of a warm climate and high humidity during the deposition of these sediments. The geochemical study of coal reveals a bimodal distribution, suggesting multiple organic matter inputs, while the shale sample shows a unimodal distribution, suggesting increased input of microbially derived organic matter. The higher CH2/CH3 ratio and vitrinite reflectance further indicate the lower thermal maturity of the studied coal. The vitrinite reflectance analysis shows a 'high volatile bituminous' rank of the studied sample. This study indicates that the Raniganj Formation (Lopingian) marks the pinnacle of Permian Gondwana Flora, following its demise with the advent of Triassic environmental shifts.

Keywords Glossopteris flora · Raniganj Formation · Damodar Basin · Palynomorphs · Organic geochemistry

- S. Suresh Kumar Pillai ssureshk_pillai@bsip.res.in
- Sandip Majumder sandipmajumder.wbes@gmail.com

Published online: 24 November 2025

- Department of Conservation Biology, Durgapur Government College, Durgapur, West Bengal 713214, India
- Department of Geology, Ravenshaw University, Cuttack, Odisha 753003, India
- ³ Birbal Sahni Institute of Palaeosciences, Lucknow, Uttar Pradesh 226007. India
- Department of Botany, Sido Kanhu Murmu University, Dumka, Jharkhand 814101, India

Introduction

The Raniganj Formation is the topmost formation in the Permian sequences of Indian Gondwana, and comprises significant coal-bearing sequences in the Damodar Basin of India, and it has great economic value (Ghosh 2001). During the deposition of the Permian sequences ranging from the Talchir to Raniganj formations, rich vegetation had flourished that was transformed into thick coal deposits. Since its first appearance at the onset of the Permian, i.e., in the Talchir Formation, the 'Glossopteris Flora' underwent many evolutionary changes owing to the climatic perturbations, as evidenced by the dominance of the midrib-less

